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Effect of the range of attractive interactions on crystallization, metastable phase transition,
and percolation in colloidal dispersions
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Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China

Jianzhong Wu*
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The equilibrium as well as nonequilibrium phase behaviors of colloidal dispersions have been investigated
using statistical-mechanical theories of fluids and solids in complement with the renormalization-group~RG!
theory. It is shown that the osmotic second virial coefficient at the critical point of the fluid-fluid transition
varies with the range of attractions and is sensitive to specific forms of the attractive potential in contrast to a
common speculation that it remains practically constant. However, for colloids with short-ranged forces, the
critical temperature of the fluid-fluid phase transition is well correlated with the range of attractions in good
agreement with an earlier empirical correlation based on simulation results. A comparison of the relative
positions of the fluid-fluid coexistence curve, freezing, melting, and percolation lines in the phase diagram
indicates that the gelation in colloidal systems has significant effects on the equilibrium phase transitions and
crystallization, especially when the attractions between colloidal particles are short ranged.
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I. INTRODUCTION

The phase behavior of colloidal dispersions has been
considerable interest in recent years for its close connec
to that of atomic systems, to protein crystallization and
the broad applications of colloids in the fabrication of nan
structured materials including photonic crystals, advan
catalysts, membranes, and ceramics@1–10#. It is now well
established that structural ordering in a colloidal dispers
resembles the fluid-solid transition in an atomic syste
while the equilibrium between a dilute and a concentra
colloidal phases resembles the gas-liquid coexistence
simple fluid. However, unlike that in most atomic system
where the intermolecular attractions are approximately c
formal, attractions between colloidal particles vary wide
depending on the chemical constitutes of the particles as
as on the solution conditions, such as temperature, pH,
type, and solvent composition@11–15#. The lack of confor-
mality in colloidal potentials complicates the phase behav
of colloids, especially on the interplay among various co
isting phases and nonequilibrium phase transitions@8,16–
18#.

Since the pioneering work by Gast, Hall, and Russel
the phase behavior of colloid-polymer mixtures@19#, it has
been extensively shown by theory@20–23#, simulation@24–
27#, and experiment@28–30# that colloidal dispersions ex
hibit stable vapor-liquid-like transition when the attracti
forces between colloidal particles are long ranged, and
fluid-fluid transition is metastable relative to the fluid-so
equilibrium when the attractions are short ranged. Appro
mately, the minimum range of attractions for the appeara
of a thermodynamically stable fluid-fluid transition is abo
one-sixth of that of repulsions@31#. While previous investi-
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gations explain semiquantitatively why a condensed fl
~‘‘liquid’’ ! is thermodynamically stable in most atomic an
molecular systems~where the van der Waals attractions b
tween molecules are long ranged in comparison to the
lecular diameter! and why the fluid-fluid transition in col-
loids is often metastable~owing to the large size of colloida
particles!, there is only limited understanding of the relatio
between the stable or metastable thermodynamic phase
sitions and a variety of loosely defined nonequilibrium c
loidal phenomena such as gelation, coagulation, dynamic
rest, ergodic-nonergodic transitions, vitrification a
jamming@32#. These nonequilibrium phenomena directly a
fect the behavior of equilibrium phase transitions in colloid
dispersions, structural ordering in particular, and often re
in poorly characterized amorphous soft materials. Becaus
the interference of nonequilibrium phenomena, it is noto
ously difficult to design experimental parameters to achie
desired equilibrium colloidal structures such as crystalli
tion of aqueous protein solutions that are of significant i
portance in practical applications.

Nonequilibrium states such as gels, aggregates,
glasses are commonplace in colloidal systems and they
important roles in materials, food, medical, and numero
other industries@33#. However, the lack of a coherent unde
standing of these nonequilibrium states means that many
dustrially important processes are handled by strictly emp
cal means. Although much progress has been made in re
years on the dynamic behavior of colloidal dispersions
remains difficult to provide accurate predictions of vario
nonequilibrium phenomena@32,34,35#. The most successfu
theoretical approach to describe glass transition in collo
systems is from the ideal mode coupling theory~MCT!
@36,37#. MCT provides a good representation of the dynam
structure factors of hard-sphere and charge-stabilized
loids as well as in colloids with short-ranged attractions n
glass transition@17,38–41#. While MCT explains some ele
ments of the transition to nonequilibrium states, it does su

ail
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severe limitations, especially at conditions where the sys
is thermodynamically unstable and the definition of the eq
librium structure factor lacks a clear physical meaning. R
cently, MCT has also been proposed to represent the gl
behavior of colloidal gelation@8#.

In this work, we investigate the interplay of the equili
rium phase transitions and the percolation in colloidal s
tems with changeable ranges of interparticle attractions.
consider here two model potentials commonly used in
literature. One is the hard-core attractive Yukawa poten
where the interparticle attraction decays exponentially w
the separation. The other is the Asakura-Oosawa poten
which is frequently used to represent the interaction betw
colloidal particles in the presence of nonadsorbing polym
We choose these two model systems because their equ
rium phase diagrams are relatively well understood and th
has been fair amount of evidence on the behavior of th
nonequilibrium states. Nevertheless, even for these relati
simple systems, a quantitative representation of the comp
phase diagram, especially on the interactions among fl
fluid, fluid-solid phase transitions and gelation, rema
subtle. Over the past few years there have been specula
based on experimental observations@42# and molecular
simulations for various model potentials@43# that the meta-
stable fluid-fluid coexistence curve is likely to be represen
by an extended corresponding state theory. It has also b
conjectured that the reduced osmotic second virial coe
cients at the critical point of the metastable fluid-fluid eq
librium remain practically constant for a variety of colloid
dispersions@44#. Furthermore, empirical correlations hav
been proposed that relate the second virial coefficient to
critical temperature of the metastable fluid-fluid transiti
@43# and to the solubility and crystallization of proteins
aqueous solutions@9,45#. However, little theoretical investi
gations have been reported to verify these and other po
lates that are obtained from limited experimental and sim
lation data.

Prediction of the fluid and solid boundaries requires re
able thermodynamic models for both crystalline solids a
fluid phases. While the liquid-state theories are now w
established, it remains challenging to predict the thermo
namic and structural properties of crystalline phases
fluid properties near the critical region. Our calculations
this work are based on recently developed perturbation th
ries for the fluid and solid phases and on a percolation the
for potential colloidal gelation. We use different thermod
namic models for the fluid and solid because there is
continuous phase transition between the two phases. As
as both theoretical models are adequate, we should hav
curate fluid-solid coexistence curves. Near the critical po
of the fluid-fluid transition, we use a renormalization gro
theory originally proposed by White and co-workers@46,47#
to take into account the long-range fluctuations. The ca
lated equilibrium phase diagrams are compared with sim
tion data whenever they are available. Meanwhile, a re
tively simple theory of colloidal percolation propose
recently by Noro and Frenkel@16# is applied to predict the
potential gelation regions. This theory is based on an ea
work for the percolation of adhesive hard spheres develo
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by Chiew and Glandt@48#. While the numerical accuracy o
this theory is yet to be established, it provides at least us
insights into the relation between the gelation and the m
stable fluid-fluid transition that qualitatively agree with e
perimental observations.

II. THEORY

In this section, we briefly discuss the theoretical mod
used in the investigation of the equilibrium phase diagra
and the percolation of Yukawa as well as Asakura-Oosa
model systems.

A. Yukawa fluids

The hard-core attractive Yukawa potential is given by

uY~r !5H `, r ,s

2«
exp@2k~r 2s!#

r /s
, r>s,

~1!

wherer is the center-to-center distance between particles
s is the hard-core diameter. The energy parameter« in the
Yukawa potential specifies the strength of attraction and
screening parameterk defines the attraction range. Accord
ing to Eq. ~1!, the attraction becomes longer ranged as
screening parameterk of the Yukawa potential decreases.

A variety of statistical-mechanical theories are availa
to represent the thermodynamic properties of Yukawa flu
@49#. The most common approach is from the mean-spher
approximation ~MSA!, which provides analytical expres
sions for both structural and thermodynamic properties@50#.
The reference hypernetted chain~HNC! approximation@51#
and the self-consistent Ornstein-Zernike approximat
~SCOZA! @17# are more accurate than MSA but require s
nificantly more numerical efforts. In this work, we use
variation of the MSA proposed recently by Henderson a
co-workers based on the inverse temperature expansio
the Helmholtz energy up to the fifth order@52,53#. We used
the modified MSA instead of the first-order perturbati
theory because the later is not very accurate when the at
tion is long ranged. Unlike the original MSA where a set
six equations must be solved numerically, the modified M
gives completely analytical expressions for the equation
state as well as for the radial distribution functions. Exce
near the critical point of the vapor-liquid equilibrium, th
calculated results agree favorably with simulation data.

The Helmholtz energy according to the modified MS
can be expressed as@54#

A

NkT
5

4h23h2

~12h!2 2
u0

F0

«

kT
2

~ks!3

6h

3FF~x!2F~y!2~x2y!
dF~y!

dy G , ~2!

wherek is the Boltzmann constant,T is the temperature, and
N is the number of particles. The first term on the right-ha
side of Eq.~2! is the reduced Helmholtz energy for the har
3-2
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sphere reference fluid given by the Carnahan-Starling eq
tion of state @55#. The packing faction is defined ash
5(p/6)rs3, wherer stands for the particle number densit
The remaining terms on the right-hand side of Eq.~2! are the
reduced Helmholtz energy from the modified MSA for t
attractive potential. Appendix A gives the expressions for
parametersu0 , F0 , the single-variable functionF(x), and
the variablesx andy. Equation~2! provides the starting poin
for calculating the vapor-liquid equilibrium of the Yakaw
fluid using the renormalization group~RG! theory ~see Sec.
III D !. Recently the modified MSA has been used to desc
the thermodynamic properties of a variety of nonpolar flu
@56# and phase behavior of aqueous colloidal dispersi
@57#.
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B. Asakura-Oosawa fluids

Asakura-Oosawa~AO! model is conventionally used to
present the equilibrium phase behavior of colloids contain
nonadsorbing polymers@23,26,58#. According to this model,
colloidal particles are represented by hard spheres and p
mers by ideal chains that do not interact with each oth
While the ideal polymer chains are allowed to penetr
among themselves, they are excluded from the particle
face, i.e., the center of mass of a polymer chain is separ
from the particle surface no closer than the polymer radius
gyration. Due to the entropy effect, the excluded volume
the ideal polymers results in an effective attraction betwe
colloidal particles, which can be represented by the Asaku
Oosawa potential@59#
uAO~r !5H 2hpkTS 11d

d D 3

@12a1~r /s!1a2~r /s!3#, s<r ,1sp

0, r>s1sp ,

~3!
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wheres is the hard-sphere diameter of the colloidal partic
sp is twice of the radius of gyration of the polymer chai
d5sp /s is the polymer-particle size ratio, andhp
5psprp/6 is the packing fraction of the polymer at a num
ber densityrp . In Eq. ~3!, the coefficientsa1 and a2 are
given by a151.5/(11d) and a250.5/(11d)3. The
Asakura-Oosawa potential was originally derived from ge
metric considerations and can also be derived from statis
mechanics@60#. According to this potential, the strength o
attraction between colloidal particles is controlled by t
polymer packing fraction and the range of attraction by
polymer radius of gyration.

Various statistical-mechanical theories for represent
the thermodynamic properties of AO fluids have been
cently reviewed by Poon@58#. Most of these theories vary in
the way the polymer component is treated. In this work
follow the ‘‘one-component’’ approach where the pairwi
additive potential is given by Eq.~3!. The mean-field Helm-
holtz free energy of the fluid phase is represented by a fi
order perturbation theory@19,49#:

A

NkT
5

4h23h2

~12h!2 1
2pr

kT E
s

`

uAO~r !g0~r !r 2dr, ~4!

where the radial distribution function of the hard-sphere r
erence system,g0(r ), is given by an analytical solution o
the Percus-Yevick~PY! equation proposed by Chang an
Sandler@61#. We use the radial distribution function of har
spheres from Chang and Sandler instead of the widely u
Verlet-Weis form@62# because the later requires numeric
solution of the PY equation. We use the former because
analytical. With the RG theory for correcting long-rang
fluctuations near the critical point of the fluid-fluid transitio
we found that the second-order perturbation terms have
,
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negligible effect on the calculated results for the vapor-liqu
equilibrium of the AO fluids@63#.

C. Crystalline solids

A recently proposed first-order perturbation theory is us
to describe the thermodynamic properties of the Yukawa
AO solids@64#. As for the fluid phase, the Helmholtz energ
includes a contribution from the reference hard-sphere c
tal and a perturbation term taking into account the attrac
interactions

A

NkT
5

AHS

NkT
112hs23E

s

`

r 2gS
HS~r !

uA~r !

kT
dr, ~5!

wheregS
HS(r ) is the radial distribution function of the hard

sphere solid, anduA(r ) is the attractive potential given b
Eq. ~1! or ~3!. We assume that as in the hard-sphere refere
system, the solid phases of both Yukawa and AO model s
tems have a face-centered-cubic~FCC! structure. The body-
center-cubic~BCC! structure is stable only when there
long-range attraction between particles.

The Helmholtz energy of the hard-sphere solid is given
a modified cell mode@65#,

AHS

NkT
52 lnH 8

&
@~r/r0!1/321#J , ~6!

wherer05&/s3 is the close packing density of a FCC cry
tal. Compared with the original cell model proposed ma
years ago by Lennard-Jones and Devonshire@66#, the modi-
fied cell model introduces a factor of 8 on the left-hand s
of Eq. ~6!, taking into consideration that in real crystals th
neighboring particles partially share the free space betw
3-3
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lattice sites. Unlike the original cell model, the modified c
model provides accurate freezing and melting densities
the fluid-solid transition of uniform hard spheres.

To obtain the radial distribution function of hard spher
in an FCC lattice, we use a procedure similar to that p
posed by Rascon, Mederos, and Navascues@67#. The radial
distribution function around an arbitrary tagged particle c
be represented by the summation of an empirical expone
function for the first layer and the Gaussian distributions
the remaining layers:

gS
HS~r 8!5

a0

r 8
e2a1~r 82R1!/21

1

24h
Aa/2p

3(
i>2

ni

r 8Ri
@e2a~r 82Ri !/21e2a~r 81Ri !/2#, ~7!

wherer 85r /s, ni is the number of particles in thei th neigh-
boring layer from the tagged particle,Ri represents the
center-to-center distance between a particle in thei th layer
and the tagged particle. For an FCC lattice, the Gaus
parametera is related to the overall particle number dens
by @68#

a5S)p

4 D 2/3F S &rs3D 1/3

21G22

. ~8!

Equation~8! is derived from a comparison between the fr
volumes from the cell model and from the Gaussian den
distributions@68#. Other parameters in Eq.~7!, a0 , a1 , and
R1 are determined by requiring that the radial distributi
function gives the exact number of particles within the fi
layer, the exact mean distance between immediate neigh
ing particles, and a contact value that is consistent with
corresponding equation of state. By imposing these requ
ments, the parametersa0 , a1 , andR1 can be solved from

4pra0E
1

`

r 8e2a1~r 82R1!/2dr85n1 , ~9!

4pr

n1
E

1

`

r 82e2a1~r 82Ri !/2dr85R1 , ~10!

Z5114ha0e2a1~12R1!/2, ~11!

where Z stands for the compressibility factor of the har
sphere solid, which, according to the modified cell model
given by

Z51/@12~rs3/& !1/3#. ~12!

In this work, we assume that the correlation beyond
first five layers does not make significant contribution to
thermodynamic properties. The numbers of particles (ni) in
the first five layers around an arbitrarily selected particle
the FCC lattice are given by@69#

~12,6,24,12,24! ~13!
01140
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and the corresponding distances (Ri) from the central par-
ticle in units of lattice constant are

~1,&,),A4,A5!. ~14!

We useR1 from Eq.~10! andRi , i 52,3,4,5, from Eq.~14! to
calculategS

HS(r ), as given in Eq.~7!. Once we have the
radial distribution function for the hard-sphere solid, the p
turbation term in Eq.~5! can be integrated numerically usin
the Romberg adaptive method.

D. Renormalization group theory

Although recent advances in equilibrium theory of simp
fluids have been primarily focused on the critical behav
near the vapor-liquid transition@70#, we are not aware of any
published work applying similar theories for colloidal sy
tems. However, experimental investigations on the phase
havior of colloidal dispersions and aqueous protein soluti
are often in the vicinity of the critical point of the metastab
fluid-fluid phase transition@42,71,72#. Indeed, nonmean-field
scaling law on the relation between the critical temperat
and the density has been observed in aqueous protein
tions. As first discovered by tenWolde and Frenkel us
Monte Carlo simulations@73# the fluid-fluid critical point is
directly related to the dynamics of colloidal-protein crysta
lization and dictates whether the fluid-fluid phase transit
is metastable or stable in comparison to the fluid-solid eq
librium.

It is well recognized that a mean-field theory is not acc
rate for predicting the critical point of the fluid-fluid trans
tion. Although the attraction between colloidal particles
typically shorter ranged than that between atomic molecu
the same theoretical tools for the nonmean-field behavio
simple fluids can be equally applied to colloidal systems
the framework of the ‘‘one-component’’ model. In this wor
we use a RG theory originally developed by White a
Zhang@47#, taking into consideration the long-range fluctu
tions. Similar applications have been recently published
the vapor-liquid equilibrium of square-well and Lennar
Jones models as well as realistic fluids@74–76#.

The RG theory calculates the Helmholtz energy due
long-range correlations recursively. It starts with a mea
field Helmholtz energy that ignores the fluctuations with
wavelength longer thanl0 . In this work, this mean-field
Helmholtz energy is calculated from Eq.~2! or Eq. ~4! for
Yukawa fluids and for AO fluids, respectively. The initia
mean-field Helmholtz energy corresponds to that in a pha
space cell of volumeVD,05l0

3. Contributions to the Helm-
holtz energy density due to longer wavelength fluctuatio
are calculated by adding a sequence of corrections to
Helmholtz energy density,d f n , n51,2,... . Specifically, as
the fluctuation wavelength is increased at each step b
constant factor oft, the phase-space cell volumeVD is in-
creased by a factor oft3:

VD,n5t3VD,n21 ,n51,2,..., ~15!
3-4
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where t52 is used in our calculations. The Helmholtz e
ergy density after the expansion of the phase-space ce
calculated from a recursive relation

Fn~r!5 f n21~r!1d f n~r!, ~16!

where the differential Helmholtz energy densityd f n(r) is
given in Appendix B. Two parametersL andc are involved
in the RG recursion:L is related to the initial cutoff wave
lengthl0 andc stands for the average gradient of the wav
let function~see Ref.@74# for details!. These two parameter
are obtained by fitting to the simulation results. The fin
Helmholtz energy of the system is calculated from the He
holtz energy density according to

A/V5 lim
n→`

f n~r!. ~17!

For most cases, satisfactory thermodynamic properties
be achieved after only a few steps of recursions.

E. Percolation theory for potential gelation

We use a simple percolation theory proposed by Noro
Frenkel@16# to identify the boundary of possible gelation
Yukawa and in AO systems. We select this theory to rep
sent gelation because it involves only static properties
colloids and because it does not require the equilibri
structure factor as an input. The key assumption in t
method is that the long-range attractions between collo
particles have little effect on the threshold of percolation, a
the boundary of possible gelation is mainly determined by
effective sticky parameter that represents the short-ran
attractions. The percolation criterion of Chiew and Glan
for sticky spheres is utilized to delimit the region where g
lation is possible@48#. Percolation is a necessary but not
sufficient condition to form a gel.

The long- and short-range attractive potentials are se
rated in terms of the osmotic second virial coefficient

B25B2
HSS 12

1

4tss2
1

4tvdwD , ~18!

whereB2
HS52ps3/3 is the second virial coefficient of har

spheres,tss is the sticky parameter defining the short-rang
attraction, andtvdw is an effective sticky parameter chara
terizing the long-ranged forces. The sticky parametertvdw is
related to the van der Waals energy parametera by

tvdw5kTv0 /a, ~19!

wherev05ps3/6 is the hard-sphere volume. Noro and Fre
kel conjectured that percolation in a colloidal system d
pends only on the short-range sticky parametertss, which
according to the analysis of Chiew and Glandt for stic
hard spheres occurs when

t`<
122h119h2

12~12h!2 . ~20!
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By comparing the percolation line to the fluid-fluid coexis
ence curve calculated from a mean-field theory, Noro a
Frenkel concluded that long-range attraction is essentia
quench metastable fluid-fluid equilibrium in colloidal sy
tems.

III. RESULTS AND DISCUSSIONS

The fluid-fluid and fluid-solid coexistence curves are c
culated by imposing that the osmotic pressures and
chemical potentials of two coexisting phases be equal:

pI5pII ,

m I5m II . ~21!

For fluid-solid equilibrium, the osmotic pressures and t
chemical potentials are directly calculated from the cor
sponding Helmholtz energies for fluid and solid phases us
the standard thermodynamic identities

p/rkT5rF]~A/NkT!

]r G
N,T

, ~22!

m/kT5F]~rA/NkT!

]r G
V,T

. ~23!

For fluid-fluid equilibrium, the RG theory is used to calcula
the Helmholtz energy. The boundary for possible gelation
located by using Eq.~20!.

A. Fluid-fluid and fluid-solid coexistence curves

Figure 1 presents the calculated fluid-fluid coexisten

FIG. 1. Fluid-fluid coexistence curves for Yukawa fluids at va
ous ranges of attractions. The solid and dashed lines are, res
tively, calculated from the modified MSA theory with and witho
the RG corrections. The symbols are from Monte Carlo simulat
by Hagen and Frenkel (ks53.9, 7.0) @25# and by Shukla (ks
51.8, 3.0, 5.0, 6.0)@81#.
3-5
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curves of attractive hard-core Yukawa model, using
modified MSA and the RG theory. Here the range of attr
tion varies fromks51.8 ~long-ranged! to 7 ~short-ranged!.
The critical point for eachks is solved from the first and
second derivatives of the osmotic pressure with respec
density. As in the previous applications of RG theory f
simple fluids@74,75,77#, we treatc andL as adjustable pa
rameters. In Fig. 1,c and L are set to be 10.0 and 0.6s,
respectively. We found that these values yield the best fi
the critical temperatures and coexisting curves from Mo
Carlo simulations. Figure 1 shows that the agreement
tween calculated results and simulation data is satisfacto
both short and long ranged attractions. While the coexiste
curves calculated from the modified MSA theory alone ag
well with simulation results far from the critical region, th
modified MSA significantly overpredicts the critical tem
peratures. Figure 1 indicates that while the critical densit
relatively insensitive to the change of the range of attracti
there is an apparent increase in the critical temperature a
range of attractions rises.

Figure 2 shows the interaction between the fluid-flu
transition and the fluid-solid transition of the Yukawa mod
system for three values ofks. When the attraction is long
ranged@Fig. 2~a!, ks53.9], the fluid-fluid phase transition i
thermodynamically stable in comparison to the fluid-so
transition. In this case, the phase diagram includes a tr
point where a dilute solution~vapor!, a concentrated solution
~liquid!, and a crystalline solid are at equilibrium. As e
pected, the RG correction has only a minor effect at the tr
point as long as it is not near the fluid-fluid critical region. A
the range of attraction is reduced@Figs. 2~b! and 2~c!, ks
57 and 9, respectively#, the fluid-fluid coexistence curve lie
underneath the freezing line, denoting that the fluid-flu
transition is metastable. Both Figs. 2~b! and 2~c! indicate that
the calculated freezing and melting lines are in good ag
ment with simulation results, particularly in the limit of hig
temperature. When«/kT50, the system reduces to a har
sphere colloid. Most previous investigations on fluid-so
equilibrium are based on perturbation theories similar
those present in this work. However, because the original
model for hard-sphere phase transition is not at all accur
simulation results for the freezing and melting densities
used as a reference for systems with attractive forces. Un
most previous investigations of fluid-solid equilibrium, o
calculations do not require the simulation results for
freezing transition of hard spheres.

Similar calculations have been applied to the AO fluid
Figure 3 shows the fluid-fluid and fluid-solid coexisten
curves for three values of the colloid-polymer relative dia
eters. Also included in Fig. 3 are molecular simulation resu
by Tavares and Sandler, using the pairwise additive AO
tential @63#. We did not include in this plot the fluid-fluid
coexistence lines at small values of polymer-particle size
tios because the simulation data are not available. With
RG parametersc and L set asc57.5 andL/s51.0, the
calculated fluid-fluid coexistence curve is in excellent agr
ment with simulation results ford51. In this case, the agree
ment between calculated and simulated melting and free
lines is also satisfactory. At smaller values ofd, however, the
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FIG. 2. Phase diagrams for the Yukawa system at three diffe
ranges of the attractive interactions.~a! ks53.9, the fluid-fluid
coexistence is thermodynamically stable;~b! ks57.0; and~c! ks
59.0, the fluid-fluid phase transitions are metastable. The s
lines and cycles are fluid-fluid and fluid-solid coexistence cur
calculated from the theory and simulation, respectively. The das
lines are fluid-fluid coexistence curves according to the modifi
MSA theory without RG correction. The diamonds correspond
the critical points calculated from Monte Carlo simulation@25#.
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perturbation theory gives only a fair account of the freez
lines. Similar observations have been reported in previ
investigations on the phase behavior of AO fluids@26,63#. As
for the Yukawa system, the AO potential yields a stable flu
fluid phase transition when the attraction is long rang
~large size of polymer chains! and a metastable fluid-fluid
transition when the attraction is short ranged~small size of
polymer chains!.

B. The critical point of the fluid-fluid transition

A few year ago Rosenbaum and co-workers reported
when the phase diagrams of some aqueous protein solu
and colloidal dispersions are plotted in terms of the stic
parameter~or effectively, the reduced second virial coef
cient! and the reduced number density, the fluid and so
lines of different colloids fall remarkably close as in the co
responding state theory of simple fluids@42#. More recently,
Vliegenthart and Lekkerkerker showed that although
critical temperature is sensitive to the range of attractive
teractions, the reduced osmotic second virial coefficient
mains practically constant at the critical point@44#. Based on
these and other investigations on the critical behavior of c
loidal dispersions, it has been speculated that the fluid-fl
coexistence curves of colloidal dispersions may follow
extended corresponding theory@43#. Semiempirical correla-
tions have also been proposed as a predictor for protein c
tallization and for the solubility of proteins in aqueous so
tions @9,45#. While these and other semiempiric
correlations appear in good agreement with a variety
simulation results and experimental data, little theoretical
vestigations have been reported on the critical temperat
of colloidal dispersions with variable ranges of attraction

Figure 4 shows the effect of the reduced critical tempe
ture (Tc* 5kTc /«) as a function of the range of attraction~G!

FIG. 3. Phase diagrams for the Asakura-Oosawa system of
ferent ranges of attractions. The solid lines and symbols are fl
fluid and fluid-solid coexistence curves calculated from the the
and simulation, respectively. Here the simulation data are fr
Tavares and Sandler@63#.
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for six model potentials of colloids. Here the RG results f
the square-well potential are from Lue and Prausnitz@74#. As
introduced by Noro and Frenkel@43#, the range of attraction
for an arbitrary potential is defined as that for an effect
square-well potential that yields the same reduced sec
virial coefficient at the same reduced temperature. For c
loids with short-ranged attractions (G,0.4), the simulation
points remarkably fall into a straight line as proposed
Noro and Frenkel@43#:

Tc* 50.2612.1G. ~24!

While for the Yukawa fluids the critical temperatures pr
dicted by the RG theory~the solid line! agree well with that
from Eq.~24!, when the range of attraction is larger than 0
the critical temperatures of the square-well fluids calcula
from the RG theory and from the Monte Carlo simulatio
clearly do not follow the simple linear relation. The deviatio
is most significant at large values of the range of attractio

We found that the invariance of the reduced second vi
coefficients (B2* 5B2 /B2

HS) at the critical point of fluid-fluid
transition is not supported by the RG calculations at least
the Yukawa and the square-well fluids. Indeed, it has b
shown before by Rosenbaum and co-workers that at the c
cal point of the metastable fluid-fluid equilibrium, the r
duced osmotic second virial coefficients of protein solutio
remain sensitive to the solution conditions@11#. Figure 5
plots B2* vs G, using results from RG calculations and fro
the Monte Carlo simulations. At small values ofG where the

if-
d-
y

FIG. 4. The effect of the range of attractions on the reduc
critical temperature of the fluid-fluid equilibrium for various mod
potentials. The simulation results are from Noro and Frenkel@43#
and from Vliegenthart and Lekkerkerker@44#, the solid and dashed
lines are calculated results using the RG theory for the Yuka
potential and for the square-well potential, the dotted line is
empirical correlation proposed by Noro and Frenkel@43#. The RG
results for the square-well potential are from Lue and Praus
@74#.
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FU, LI, AND WU PHYSICAL REVIEW E 68, 011403 ~2003!
attractive potential is short ranged, the reduced second v
coefficient declines asG increases. Interestingly,B2* exhibits
a minimum at an intermediate range of attractions for
square-well potential. There has been speculation that
low values of the reduced second virial coefficient at
critical point of protein solutions are associated with t
strong anisotropic attractions between protein partic
@8,78#. However, Fig. 5 implies that at certain conditions,
isotropic potential may also give a relative small val
of B2* .

C. Threshold of the range of attraction for a stable
fluid-fluid transition

It is now well known that the range of attraction betwe
particles determines whether or not a colloidal system
exhibit a stable fluid-fluid transition. However, it remain
difficult to quantitatively predict the range of attraction b
yond which the fluid-fluid transition is thermodynamical
stable. Recently, Noro and Frenkel observed that for 2n2n
Lennard-Jones potential,a-Lennard-Jones potential, and a
tractive Yukawa potential, the boundary between stable
metastable fluid-fluid transition is located within a narro
range ofG between 0.13 and 0.15@43#.

By using the RG theory and perturbation theories for flu
and solids, we calculated the triple points of the Yukawa a
AO fluids at different ranges of attractions. The triple po
disappears when the fluid-fluid transition becomes me
stable in comparison to the fluid-solid equilibrium. Figure
shows the dependence of the triple point densities on
screening parameters of the attractive Yukawa poten
When the attraction is long ranged~small values ofks!, the
triple point resembles that for a simple fluid where the d

FIG. 5. The reduced second virial coefficient at the fluid-flu
critical point for the Yukawa potential and for the square-well p
tential. The points are simulation results from Vliegenthart and
kkerkerker@44#, and the solid lines are calculated, using the R
theory. The RG results for the square-well potential are from L
and Prausnitz@74#.
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sities of vapor, liquid, and solid are easily distinguishab
The densities of ‘‘vapor’’ and ‘‘liquid’’ phases converges a
the range of attraction decreases and whenks.5.3, the
triple point disappears, signaling a metastable fluid-flu
transition. This value ofks corresponds to the range of a
tractionG50.13 at the critical point, in excellent agreeme
with the simulation result.

Figure 7 presents the triple points of the AO potential
different values of the polymer-particle size ratios. T
crossover size ratio predicted by the RG theory (d50.45) is
slightly larger than that obtained form direct simulatio
based on the AO potential (d50.4). This discrepancy is
likely related to the inaccuracy of our theory for predictin
the freezing line of the AO fluid with short-ranged attra
tions. Based on a model polymer-colloid system consist

-
-

e

FIG. 6. The reduced densities of vapor, liquid, and solid pha
at the triple points of the Yukawa model system at various range
attractions.

FIG. 7. The triple points for the Asakura-Oosawa system.
3-8



-
o
s
o
e

e
se
ro

sy
fig

he
oth
ce

ta-
le.

cur
on.
line
ult,
a-
r-

rac-
in
art
in
lar
een
ms

id
ela-

ex-
e

he
r-
si-
ple
ed.
nd
ith
for

tial

ble
e
to

ons
s

ial.
ne
s

tiga-
ef-

nd
ar.
id
ith
hat
ate
s,
G

ms

i-

EFFECT OF THE RANGE OF ATTRACTIVE . . . PHYSICAL REVIEW E 68, 011403 ~2003!
of poly~methyl methacrylate! particle and polystyrene poly
mers, the experimental value for the crossover size rati
about 0.24, significantly lower than the prediction of mo
current calculations. This disagreement between the the
and experiments warrants further investigations. Becaus
is not obvious on how to define the reduced temperatur
terms of the AO potential, we did not compare the on
range of attraction with the empirical rule proposed by No
and Frenkel@43#.

D. Gelation

Figure 8 presents the phase diagrams of the Yukawa
tem at variable ranges of attractions. Also shown in this
ure is the percolation line predicted using Eq.~20!. Gelation

FIG. 8. ~a! The fluid-fluid coexistence~thin broken line!, the
fluid-solid coexistence~solid line!, as well as the percolation line
~dashed line! for the Yukawa potential atks59.0. ~b! Same as~a!
but for ks51.8. Here the fluid-fluid transition is thermodynam
cally stable and is labeled as the thin solid line.
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is likely to occur underneath the percolation line. When t
attraction is short-ranged, the percolation line crosses b
the freezing line and the metastable fluid-fluid coexisten
curve. Above the percolation line, crystallization and me
stable fluid-fluid transition are expected to be observab
Conversably, below the percolation line, gelation may oc
before crystallization or the metastable fluid-fluid separati
As the range of attraction increases, the percolation
shifts to the right-hand side of the phase diagram. As a res
gelation becomes less likely to interfere with the crystalliz
tion and the fluid-fluid transitions. Because colloidal pa
ticles are often larger than protein molecules and the att
tion between colloidal particles is relatively shorter ranged
comparison to that between proteins, Fig. 8 explains in p
why metastable fluid-fluid transition is often observed
aqueous protein solutions, but not in typical colloids. Simi
equilibrium and nonequilibrium phase boundaries have b
reported by Kulkarni and co-workers for square-well syste
and for aqueous protein solutions@8#.

For systems with long-ranged attractions, the fluid-flu
transition becomes thermodynamically stable and the g
tion line shifts out of the fluid-fluid coexistence region@Fig.
8~b!#. As the range of attraction is further increased, we
pect that the percolation line will move further toward th
right-hand side of the melting line. In that event, both t
fluid-fluid and fluid-solid transitions are free from the inte
ference of the percolation. As a result, the fluid-fluid tran
tion and freezing should be readily observable as in a sim
fluid where the intermolecular attractions are long rang
The interplay between the equilibrium phase behavior a
gelation, as shown in Fig. 8, agrees at least qualitatively w
that reported by Foffi and co-workers based on SCOZA
the fluid phases and MCT for gelation@17#.

Similar phase behavior is observed using the AO poten
~Fig. 9!. Interestingly, we found that, as shown in Fig. 9~a!,
the percolation line may interfere only with the metasta
fluid-fluid transition, but not with the freezing line for th
AO system with short-ranged attractions. In comparison
that in the Yukawa system with also short-ranged attracti
@Fig. 8~a!#, it appears that crystallization in colloidal system
is sensitive to the specific forms of the attractive potent
Figure 9~b! shows that in the AO system, the percolation li
may impede the fluid-fluid equilibrium, freezing as well a
melting transitions.

IV. CONCLUSIONS

Over the last decade there have been extensive inves
tions on the relation between the osmotic second virial co
ficient and the phase behavior of colloids, solubility a
crystallization of proteins in aqueous solutions in particul
We have shown that at the critical point of the fluid-flu
transition, the osmotic second virial coefficient varies w
the range of attractions, in contrast to the common belief t
it remains practically constant. However, given an accur
pair potential of mean force between colloidal particle
statistical-mechanical theories in complement with the R
correction may provide reliable equilibrium phase diagra
3-9
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FU, LI, AND WU PHYSICAL REVIEW E 68, 011403 ~2003!
of colloids ~with the premise that the potential of mean for
is pairwise additive!.

For colloids with short-ranged attractions, the critical te
perature of the fluid-fluid transition appears well correla
with the range of attractions, essentially independent of
details of the potential profiles. Such correlation will be us
ful for the estimation of the critical temperature of colloid
dispersions once the potential profile or the osmotic sec
virial coefficient is already known. Since the latter can
conveniently measured using conventional light scattering
chromatography methods@79#, a correlation on the critica
temperature and the range of attraction may find applicat
in the identification of favorable solutions conditions leadi
toward protein crystallization. As observed by Noro a
Frenkel@43#, the range of attraction may also provide a co
venient parameter to justify whether or not the fluid-flu
transition is thermodynamically stable.

By comparing the relative positions of the phase coex

FIG. 9. Same as Fig. 8 but for the Asakura-Oosawa potential~a!
d50.2 and~b! d51.0.
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ence curves and the percolation lines in the same phase
gram, we conclude that gelation is most likely to occur f
systems with short-ranged attractions. The interaction
tween gelation and the equilibrium phase transitions dep
not only on the range of attractions but also on the details
the potential profiles. Because percolation is a necessary
not sufficient condition leading to gelation or glass tran
tions, further investigations are required to understand
interplay among equilibrium and nonequilibrium phase tra
sitions, glass transitions in particular.
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APPENDIX A

The following definitions are used to calculate the Hel
holtz energy of Yukawa fluids according to the modifie
MSA. The parametersu0 andF0 in Eq. ~2! are given by

u05
U~l!

l2~12h!2 , ~A1!

F05
e2lU~l!1S~l!

l3~12h!2 , ~A2!

and the single-variable functionF(x) is

F~x!52
1

4
ln~122x!22 ln~12x!2

3

2
x2

1

12x
11,

~A3!

wherel5ks and

U~l!512h@~11h/2!l1112h#, ~A4!

S~l!5~12h!2l316h~12h!l2118h2l212h~112h!,
~A5!

x5
6h~11lf!

F0
2l2

«

kT
, ~A6!

y5
6hf

F0
2l

«

kT
, ~A7!
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f5
l2~12h!2~12e2l!212h~12h!@12l/22~11l/2!e2l#

e2lU~l!1S~l!
. ~A8!
n

ity

hat
APPENDIX B

The RG calculations in this work follow the recursio
relations reported by Jiang and Prausnitz@80#. The differen-
tial Helmholtz energy density is given by

d f n~r!5H Kn ln
V i

n

Vs
n , 0<r,rmax/2

0, rmax/2<r,rmax,

~B1!

wherermax is the maximum possible particle number dens
and

Kn5
kT

23nL3 , ~B2!

V i
n~r!5E

0

`

exp@2Gi
n~r,x!/Kn#dx, i 5s, l , ~B3!

Gi
n~r,x!5

f̄ i
n~r1x!1 f̄ i

n~r2x!22 f̄ i
n~r!

2
, i 5s, l ,

~B4!
-

01140
f̄ i
n~r!' f n21~r!1ar2, ~B5!

f̄ s
n~r!5 f n21~r!1ar2

cv̄2

22n11L̄2
, ~B6!

a5
1

2 E uA~ ur2r 8u!dr , ~B7!

L̄5L/s, ~B8!

v̄25
1

3!as2 E r 2uA~ ur2r 8u!dr . ~B9!

For the model potentials considered in this work, we find t
the parameterv̄2 is

v̄yuk
2 5

1

3 S 616l13l21l3

l2~11l! D . ~B10!

for Yukawa fluids and
v̄AO
2 5

1

3 S 21/51a1/62a2/81~11d!5/52a1~11d!6/61a2~11d!8/8

21/31a1/42a2/61~11d!3/32a1~11d!4/41a2~11d!6/6D . ~B11!

for AO fluids.
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