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Effect of the range of attractive interactions on crystallization, metastable phase transition,
and percolation in colloidal dispersions
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The equilibrium as well as nonequilibrium phase behaviors of colloidal dispersions have been investigated
using statistical-mechanical theories of fluids and solids in complement with the renormalizationfg@®up
theory. It is shown that the osmotic second virial coefficient at the critical point of the fluid-fluid transition
varies with the range of attractions and is sensitive to specific forms of the attractive potential in contrast to a
common speculation that it remains practically constant. However, for colloids with short-ranged forces, the
critical temperature of the fluid-fluid phase transition is well correlated with the range of attractions in good
agreement with an earlier empirical correlation based on simulation results. A comparison of the relative
positions of the fluid-fluid coexistence curve, freezing, melting, and percolation lines in the phase diagram
indicates that the gelation in colloidal systems has significant effects on the equilibrium phase transitions and
crystallization, especially when the attractions between colloidal particles are short ranged.
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[. INTRODUCTION gations explain semiquantitatively why a condensed fluid
(“liquid” ) is thermodynamically stable in most atomic and
The phase behavior of colloidal dispersions has been aofolecular systeméwvhere the van der Waals attractions be-
considerable interest in recent years for its close connectiotween molecules are long ranged in comparison to the mo-
to that of atomic systems, to protein crystallization and forlecular diameterand why the fluid-fluid transition in col-
the broad applications of colloids in the fabrication of nano-loids is often metastabl@wing to the large size of colloidal
structured materials including photonic crystals, advancegarticles, there is only limited understanding of the relations
catalysts, membranes, and ceranjits1Q. It is now well  between the stable or metastable thermodynamic phase tran-
established that structural ordering in a colloidal dispersiorsitions and a variety of loosely defined nonequilibrium col-
resembles the fluid-solid transition in an atomic systemJoidal phenomena such as gelation, coagulation, dynamic ar-
while the equilibrium between a dilute and a concentratedest, ergodic-nonergodic transitions, vitrification and
colloidal phases resembles the gas-liquid coexistence of famming[32]. These nonequilibrium phenomena directly af-
simple fluid. However, unlike that in most atomic systemsfect the behavior of equilibrium phase transitions in colloidal
where the intermolecular attractions are approximately coneispersions, structural ordering in particular, and often result
formal, attractions between colloidal particles vary widelyin poorly characterized amorphous soft materials. Because of
depending on the chemical constitutes of the particles as wethe interference of nonequilibrium phenomena, it is notori-
as on the solution conditions, such as temperature, pH, satusly difficult to design experimental parameters to achieve
type, and solvent compositidii1-15. The lack of confor-  desired equilibrium colloidal structures such as crystalliza-
mality in colloidal potentials complicates the phase behaviotion of aqueous protein solutions that are of significant im-
of colloids, especially on the interplay among various coex-portance in practical applications.
isting phases and nonequilibrium phase transitifi46— Nonequilibrium states such as gels, aggregates, and
18]. glasses are commonplace in colloidal systems and they play
Since the pioneering work by Gast, Hall, and Russel orimportant roles in materials, food, medical, and numerous
the phase behavior of colloid-polymer mixturied®], it has  other industrie$33]. However, the lack of a coherent under-
been extensively shown by thedi#0—23, simulation[24—  standing of these nonequilibrium states means that many in-
27], and experimenf28—3(Q that colloidal dispersions ex- dustrially important processes are handled by strictly empiri-
hibit stable vapor-liquid-like transition when the attractive cal means. Although much progress has been made in recent
forces between colloidal particles are long ranged, and thgears on the dynamic behavior of colloidal dispersions, it
fluid-fluid transition is metastable relative to the fluid-solid remains difficult to provide accurate predictions of various
equilibrium when the attractions are short ranged. Approxi-nonequilibrium phenomeni82,34,39. The most successful
mately, the minimum range of attractions for the appearanceheoretical approach to describe glass transition in colloidal
of a thermodynamically stable fluid-fluid transition is about systems is from the ideal mode coupling thediCT)
one-sixth of that of repulsiong1]. While previous investi- [36,37. MCT provides a good representation of the dynamic
structure factors of hard-sphere and charge-stabilized col-
loids as well as in colloids with short-ranged attractions near
*Author to whom correspondence should be addressed. Emagjlass transitiof17,38—41. While MCT explains some ele-
address: jwu@engr.ucr.edu ments of the transition to nonequilibrium states, it does suffer
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severe limitations, especially at conditions where the systerby Chiew and Glandf48]. While the numerical accuracy of

is thermodynamically unstable and the definition of the equithis theory is yet to be established, it provides at least useful

librium structure factor lacks a clear physical meaning. Rednsights into the relation between the gelation and the meta-

cently, MCT has also been proposed to represent the glasjable fluid-fluid transition that qualitatively agree with ex-

behavior of colloidal gelatiof8]. perimental observations.

In this work, we investigate the interplay of the equilib-

rium phase transitions and the percolation in colloidal sys- Il. THEORY

tems with changeable ranges of interparticle attractions. We ) ) ) i )

consider here two model potentials commonly used in the N this section, we briefly discuss the theoretical models

literature. One is the hard-core attractive Yukawa potentiahS€d in the investigation of the equilibrium phase diagrams

where the interparticle attraction decays exponentially witi2nd the percolation of Yukawa as well as Asakura-Oosawa

the separation. The other is the Asakura-Oosawa potentidiiodel systems.

which is frequently used to represent the interaction between

colloidal particles in the presence of nonadsorbing polymers. A. Yukawa fluids

We choose these two model systems because their equilib-

rium phase diagrams are relatively well understood and there

has been fair amount of evidence on the behavior of their '

nonequilibrium states. Nevertheless, even for these relatively u'(r)= exd —k(r—o)] (1)

simple systems, a quantitative representation of the complete B

phase diagram, especially on the interactions among fluid-

fluid, fluid-solid phase transitions and gelation, remains . . .
. “wherer is the center-to-center distance between particles and

subtle. Over the past few years there have been speculations.

based on experimental observatiopd2] and molecular o'ls the hard-c_ore d'a'.“.eter- The energy parametar the
simulations for various model potentidi3] that the meta- Yukawa potential specifies the strength of attraction and the

stable fluid-fluid coexistence curve is likely to be representec?Creenlrlg parametev defines the attraction range. Accord-

by an extended corresponding state theory. It has also beeh? o !Eq.(l), the attraction becomes Ionger ranged as the
screening parameter of the Yukawa potential decreases.

conjectured that the reduced osmotic second virial coeffi . - X ; ;

) " ; . . . A variety of statistical-mechanical theories are available
cients at the critical point of the metastable fluid-fluid equi- he th d ) : £ Yuk fluid
librium remain practically constant for a variety of colloidal to represent the thermodynamic properties of ukawa fluids

[49]. The most common approach is from the mean-spherical

dispersions[44]. Furthermore, empirical correlations havea roximation (MSA), which provides analytical expres-
been proposed that relate the second virial coefficient to thaPP ' P Y b

- . . .. Sions for both structural and thermodynamic propeiftis.
critical temperature of the metastable fluid-fluid transition o
[43] and to the solubility and crystallization of proteins in The reference hypernetted chatiNC) approximation{51]

aqueous solutiong,45]. However, little theoretical investi- and the self-consistent Ornstein-Zernike approximation

gations have been reported to verify these and other posttg-SCOZA) [17] are more accurate than MSA but require sig-

. . : .~ hificantly more numerical efforts. In this work, we use a
lates that are obtained from limited experimental and simu- _ ="
lation data. variation of the MSA proposed recently by Henderson and

Prediction of the fluid and solid boundaries requires re“_co-workers based on the inverse temperature expansion of
able thermodynamic models for both crystalline solids an he Helmholtz energy up to the fifth ordgs2,53. We used

fluid phases. While the liquid-state theories are now well he modified MSA instead of the first-order perturbation

established, it remains challenging to predict the thermod theory because the later is not very accurate when the attrac-

; . X tjon is long ranged. Unlike the original MSA where a set of
namic and structural properties of crystalline phases and. . . .
X ; g . : . Six equations must be solved numerically, the modified MSA
fluid properties near the critical region. Our calculations in

this work are based on recently developed perturbation thed V> completely analytical EXPTESSIons for the_ equation of
. . . . State as well as for the radial distribution functions. Except
ries for the fluid and solid phases and on a percolation theor

; : . . Year the critical point of the vapor-liquid e uilibrium, the
for potential colloidal gelation. We use different thermody- calculated resultspagree favorabli)/ witﬂ simu?ation data.

namic models for the fluid and solid because there is no The Helmholtz enerav according to the modified MSA
continuous phase transition between the two phases. As Iong‘aln be expressed §54] ay 9

as both theoretical models are adequate, we should have at-
curate fluid-solid coexistence curves. Near the critical point
of the fluid-fluid transition, we use a renormalization group

The hard-core attractive Yukawa potential is given by
© r<o

rlo

A 4p—3n% 6y & (ko)®

theory originally proposed by White and co-work¢4$,47 NKT (1-9)? @ kT 67

to take into account the long-range fluctuations. The calcu- dF

lated equilibrium phase diagrams are compared with simula- X|E(x)—F(y)—(x—Y) dFly) ' 2)
tion data whenever they are available. Meanwhile, a rela- dy

tively simple theory of colloidal percolation proposed

recently by Noro and Frenk¢lL6] is applied to predict the wherek is the Boltzmann constanti, is the temperature, and
potential gelation regions. This theory is based on an earlieN is the number of particles. The first term on the right-hand
work for the percolation of adhesive hard spheres developeside of Eq.(2) is the reduced Helmholtz energy for the hard-
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sphere reference fluid given by the Carnahan-Starling equa- B. Asakura-Oosawa fluids
tion of state[55]. The packing faction is defined ag

= (77/6)9"_3’_ wherep stands for the particle number density. yresent the equilibrium phase behavior of colloids containing
The remaining terms on the right-hand S|d_e_ of E).are the nonadsorbing polymei23,26,58. According to this model,
reduced Helmholtz energy from the modified MSA for the o ipigal particles are represented by hard spheres and poly-
attractive potential. Appendix A gives the expressions for theners py ideal chains that do not interact with each other.
parametersy, ®o, the single-variable functioff(x), and  \yhjle the ideal polymer chains are allowed to penetrate
the variablesc andy. Equation(2) provides the starting point among themselves, they are excluded from the particle sur-
for calculating the vapor-liquid equilibrium of the Yakawa face j.e., the center of mass of a polymer chain is separated
fluid using the renormalization groufRG) theory (see Sec. from the particle surface no closer than the polymer radius of
[11 D). Recently the modified MSA has been used to descr'b%yration. Due to the entropy effect, the excluded volume of
the thermodynamic properties of a variety of nonpolar fluidsthe ideal polymers results in an effective attraction between
[56] and phase behavior of aqueous colloidal dispersiongolioidal particles, which can be represented by the Asakura-
[57]. Oosawa potentigl59]

Asakura-OosawdAO) model is conventionally used to

+6\3
u?O(r)= _ﬂka( S )[1_al(f/0)+a2(r/a)3], osr<+o,

()

0, r=o+op,

whereo is the hard-sphere diameter of the colloidal particle,negligible effect on the calculated results for the vapor-liquid
o, is twice of the radius of gyration of the polymer chain, equilibrium of the AO fluidg63].
é=o,lo is the polymer-particle size ratio, andy,

=ma,pp/6 is the packing fraction of the polymer at a num- C. Crystalline solids
i . In Eq. h ffici
gﬁlregens)l/ty;;i: f 5/(q1 +(35)) t aengozzlggnglsal j‘g;? a2 Tahrz A recently proposed first-order perturbation theory is used

to describe the thermodynamic properties of the Yukawa and

metric considerations and can also be derived from statisticéﬁO solids[64] A.S fo'r the fluid phase, the Helmholtz energy
includes a contribution from the reference hard-sphere crys-

mechani . Accordin hi ntial, th rength of . o ;
at'ﬁ;czo: S[bGquNeg: ch" o?dta?l tpas;tirc):(ljeti ;[Sa (,:(;n?rcjlte% %ty tc;] ef[al and a perturbation term taking into account the attractive
polymer packing fraction and the range of attraction by thenteractions
polymer radius of gyration. A AHS w0 UA(r)

. .. . . . _ A

Various statistical-mechanical theories for representing ——=——+12750 3f rzggs(r) dr, (5)
the thermodynamic properties of AO fluids have been re- NKT  NKT o kT
cently reviewed by Poofb8]. Most of these theories vary in HS, « S )
the way the polymer component is treated. In this work wewheregg™(r) is the radial distribution function of the hard-
follow the “one-component” approach where the pairwise Sphere solid, andi(r) is the attractive potential given by
additive potential is given by Eq3). The mean-field Helm- Ed. (1) or (3). We assume that as in the hard-sphere reference
holtz free energy of the fluid phase is represented by a firstsystem, the solid phases of both Yukawa and AO model sys-
order perturbation theorj19,49: tems have a face-centered-culiCC) structure. The body-
center-cubic(BCC) structure is stable only when there is
A 4yp—379% 2mp (= "0 , long-range attraction between particles. o
NKT (1= 7)2 T f u™=(r)go(r)redr, (4 The Helmholtz energy of the hard-sphere solid is given by
7 a modified cell mod¢65],

Asakura-Oosawa potential was originally derived from geo

where the radial distribution function of the hard-sphere ref- AHS 8
erence systenygg(r), is given by an analytical solution of —— = —In{ —[(p/py)P-1]}, (6)
the Percus-YevickPY) equation proposed by Chang and NkT V2

Sandler{61]. We use the radial distribution function of hard

spheres from Chang and Sandler instead of the widely usedherep,=v2/02 is the close packing density of a FCC crys-
Verlet-Weis form[62] because the later requires numericaltal. Compared with the original cell model proposed many
solution of the PY equation. We use the former because it igears ago by Lennard-Jones and Devons@fd, the modi-
analytical. With the RG theory for correcting long-range fied cell model introduces a factor of 8 on the left-hand side
fluctuations near the critical point of the fluid-fluid transition, of Eq. (6), taking into consideration that in real crystals the
we found that the second-order perturbation terms have onlgeighboring particles partially share the free space between

011403-3



FU, LI, AND WU PHYSICAL REVIEW E 68, 011403 (2003

lattice sites. Unlike the original cell model, the modified cell and the corresponding distance®; X from the central par-
model provides accurate freezing and melting densities foticle in units of lattice constant are
the fluid-solid transition of uniform hard spheres.

To obtain the radial distribution function of hard spheres
in an FCC lattice, we use a procedure similar to that pro- (1vV2,V3,4,\5). (14
posed by Rascon, Mederos, and Navas¢6&$ The radial
distribution function around an arbitrary tagged particle can
be represented by the summation of an empirical exponentiaie useR; from Eq.(10) andR;, i =2,3,4,5, from Eq(14) to
function for the first layer and the Gaussian distributions incalculateg55(r), as given in Eq.(7). Once we have the

the remaining layers: radial distribution function for the hard-sphere solid, the per-
turbation term in Eq(5) can be integrated numerically using
@ , 1 i
ggs(r’)= —?e*"‘l“ ~Rp)i2, \/m the Romberg adaptive method.
r 247
% n; [e’““"Ri)’z-i- e*a(f'+Ri)/2]' @) D. Renormalization group theory

=2 I'R; Although recent advances in equilibrium theory of simple
) ) o _ fluids have been primarily focused on the critical behavior
wherer’ =r/c, n; is the number of particles in thiéh neigh-  near the vapor-liquid transitiof70], we are not aware of any
boring layer from the tagged particld; represents the pyplished work applying similar theories for colloidal sys-
center-to-center distance between a particle inithdayer  tems. However, experimental investigations on the phase be-
and the tagged particle. For an FCC lattice, the GaussiaRavior of colloidal dispersions and aqueous protein solutions
parametew is related to the overall particle number density gre often in the vicinity of the critical point of the metastable
by [68] fluid-fluid phase transitiof42,71,73. Indeed, nonmean-field
o3 13 scaling law on the relation between the critical temperature
a:(@) (2) 1 ) and the density has been observed in aqueous protein solu-
4 pos tions. As first discovered by tenWolde and Frenkel using
Monte Carlo simulation$73] the fluid-fluid critical point is
Equation(8) is derived from a comparison between the freedirectly related to the dynamics of colloidal-protein crystal-
volumes from the cell model and from the Gaussian densityization and dictates whether the fluid-fluid phase transition
distributions[68]. Other parameters in E{7), ag, @;, and is metastable or stable in comparison to the fluid-solid equi-
R, are determined by requiring that the radial distributionlibrium.
function gives the exact number of particles within the first It is well recognized that a mean-field theory is not accu-
layer, the exact mean distance between immediate neighbarate for predicting the critical point of the fluid-fluid transi-
ing particles, and a contact value that is consistent with théion. Although the attraction between colloidal particles is
corresponding equation of state. By imposing these requireypically shorter ranged than that between atomic molecules,
ments, the parametets,, «;, andR; can be solved from the same theoretical tools for the nonmean-field behavior of
simple fluids can be equally applied to colloidal systems in
the framework of the “one-component” model. In this work,
we use a RG theory originally developed by White and
Zhang[47], taking into consideration the long-range fluctua-
4ap (= tions. Similar applications have been recently published for
—r rf2€—a1<r'—Ri>/2dr':R1, (10)  the vapor-liquid equilibrium of square-well and Lennard-
N1 J1 Jones models as well as realistic flujd@g—74.
The RG theory calculates the Helmholtz energy due to
Z=1+4name” 1t ~RJ2 (1))  long-range correlations recursively. It starts with a mean-
field Helmholtz energy that ignores the fluctuations with a
where Z stands for the compressibility factor of the hard- wavelength longer tham,. In this work, this mean-field
sphere solid, which, according to the modified cell model, isHelmholtz energy is calculated from E(R) or Eq. (4) for
given by Yukawa fluids and for AO fluids, respectively. The initial
mean-field Helmholtz energy corresponds to that in a phase-
Z=1[1~(pa®Iv2)*"?. (12 space cell of volumé/p o=\3. Contributions to the Helm-
holtz energy density due to longer wavelength fluctuations
In this work, we assume that the correlation beyond thesre calculated by adding a sequence of corrections to the
first five layers does not make significant contribution to theqelmholtz energy densitysf,, n=1,2,.... Specifically, as
thermodynamic properties. The numbers of particle$ (0 the fluctuation wavelength is increased at each step by a
the first five layers around an arbitrarily selected particle agonstant factor of, the phase-space cell volunw is in-
the FCC lattice are given mﬁg] creased by a factor G?

-2

47Tpa0J r'e” el ~R2gp =n | (9)
1

(12,6,24,12,2% (13 Vo n=tVp,1,n=12,.., (15)
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wheret=2 is used in our calculations. The Helmholtz en-
ergy density after the expansion of the phase-space cell is 1.0 om
calculated from a recursive relation . ;'i
Fa(p)=fn_1(p)+ 8fn(p), (16) 081 .37
where the differential Helmholtz energy densié§,(p) is | Y
given in Appendix B. Two parametetsand ¢ are involved m 061 *70
in the RG recursionL is related to the initial cutoff wave- a
lengthA o and ¢ stands for the average gradient of the wave-
let function(see Ref[74] for detaily. These two parameters 0.4 1
are obtained by fitting to the simulation results. The final
Helmholtz energy of the system is calculated from the Helm- 0o
holtz energy density according to ’
A/V=Ilimf,(p). a7 0.0
n—oo :
0 1 2 3
For most cases, satisfactory thermodynamic properties can e/kT
be achieved after only a few steps of recursions. FIG. 1. Fluid-fluid coexistence curves for Yukawa fluids at vari-
ous ranges of attractions. The solid and dashed lines are, respec-
E. Percolation theory for potential gelation tively, calculated from the modified MSA theory with and without

. ) the RG corrections. The symbols are from Monte Carlo simulation
We use a simple percolation theory proposed by Noro an@ly Hagen and Frenkelx=3.9, 7.0) [25] and by Shukla o
Frenkel[16] to identify the boundary of possible gelation in =1 g, 3.0, 5.0, 6.0§81].

Yukawa and in AO systems. We select this theory to repre-

sent gelation because it involves only static properties 0By comparing the percolation line to the fluid-fluid coexist-
colloids and because it does not require the equilibriumence curve calculated from a mean-field theory, Noro and
structure factor as an input. The key assumption in thisrenkel concluded that long-range attraction is essential to

method is that the long-range attractions between colloidajuench metastable fluid-fluid equilibrium in colloidal sys-
particles have little effect on the threshold of percolation, andems.

the boundary of possible gelation is mainly determined by an

effectn_/e sticky parameter that_ represents .the short-ranged IIl. RESULTS AND DISCUSSIONS

attractions. The percolation criterion of Chiew and Glandt

for sticky spheres is utilized to delimit the region where ge- The fluid-fluid and fluid-solid coexistence curves are cal-
lation is possibld48]. Percolation is a necessary but not aculated by imposing that the osmotic pressures and the

sufficient condition to form a gel. chemical potentials of two coexisting phases be equal:
The long- and short-range attractive potentials are sepa- L
rated in terms of the osmotic second virial coefficient pP=p,
1 1 w=pu'" (21)
HS
B>=B; (1_?55_ mv_\/), (18)

For fluid-solid equilibrium, the osmotic pressures and the
chemical potentials are directly calculated from the corre-

HS_ 313 i i i

whereB;°=2mo~/3 is the second virial coefficient of hard g, 4ing Helmholtz energies for fluid and solid phases using
spheresy®®is the sticky parameter defining the short-rangedie standard thermodynamic identities

attraction, and*%" is an effective sticky parameter charac-

terizing the long-ranged forces. The sticky parametéf’ is J(AINKT)
related to the van der Waals energy paramatby p/pkT=p | (22
N, T
dw_
7’ —kTUo/a, (19 _[ﬁ(pA/NkT) 23
wherev = 70°/6 is the hard-sphere volume. Noro and Fren- ap v,T

kel conjectured that percolation in a colloidal system de- ) ) o )
pends only on the short-range sticky paramefr which For fluid-fluid equilibrium, the RG theory is usgd to calcglatg
according to the analysis of Chiew and Glandt for stickythe Helmholtz energy. The boundary for possible gelation is

hard spheres occurs when located by using E¢(20).
1—29+199? A. Fluid-fluid and fluid-solid coexistence curves
S . . . .
T 12(1— 5)? (20 Figure 1 presents the calculated fluid-fluid coexistence
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curves of attractive hard-core Yukawa model, using the
modified MSA and the RG theory. Here the range of attrac-
tion varies fromxo=1.8 (long-rangegl to 7 (short-rangef

The critical point for eachko is solved from the first and
second derivatives of the osmotic pressure with respect to
density. As in the previous applications of RG theory for
simple fluids[74,75,71, we treatys andL as adjustable pa-
rameters. In Fig. 1)y and L are set to be 10.0 and &p6
respectively. We found that these values yield the best fit of
the critical temperatures and coexisting curves from Monte
Carlo simulations. Figure 1 shows that the agreement be-
tween calculated results and simulation data is satisfactory at
both short and long ranged attractions. While the coexistence
curves calculated from the modified MSA theory alone agree
well with simulation results far from the critical region, the
modified MSA significantly overpredicts the critical tem-
peratures. Figure 1 indicates that while the critical density is
relatively insensitive to the change of the range of attraction,
there is an apparent increase in the critical temperature as the
range of attractions rises.

Figure 2 shows the interaction between the fluid-fluid
transition and the fluid-solid transition of the Yukawa model
system for three values ofo. When the attraction is long
ranged Fig. 2(a), ko= 3.9], the fluid-fluid phase transition is
thermodynamically stable in comparison to the fluid-solid
transition. In this case, the phase diagram includes a triple
point where a dilute solutiofvapon, a concentrated solution
(liquid), and a crystalline solid are at equilibrium. As ex-
pected, the RG correction has only a minor effect at the triple
point as long as it is not near the fluid-fluid critical region. As

kT

e/kT

the range of attraction is reducé¢Bigs. 2b) and 2c), ko 3 +——
=7 and 9, respectivelythe fluid-fluid coexistence curve lies 0 02 04 06 08 1 12
underneath the freezing line, denoting that the fluid-fluid po

transition is metastable. Both Figgb2 and Zc¢) indicate that 0

the calculated freezing and melting lines are in good agree-
ment with simulation results, particularly in the limit of high
temperature. When/kT=0, the system reduces to a hard- ]
sphere colloid. Most previous investigations on fluid-solid 1
equilibrium are based on perturbation theories similar to
those present in this work. However, because the original cell
model for hard-sphere phase transition is not at all accurate, :
simulation results for the freezing and melting densities are 2
used as a reference for systems with attractive forces. Unlike 1
most previous investigations of fluid-solid equilibrium, our
calculations do not require the simulation results for the .
freezing transition of hard spheres. 3 1
Similar calculations have been applied to the AO fluids. 1
Figure 3 shows the fluid-fluid and fluid-solid coexistence VNNV
. . . 0 02 04 06 03 1 1.2 14
curves for three values of the colloid-polymer relative diam- oG
eters. Also included in Fig. 3 are molecular simulation results

by Tavares and Sandler, using the pairwise additive AO po- |G 2. Phase diagrams for the Yukawa system at three different
tential [63]. We did not include in this plot the fluid-fluid ranges of the attractive interaction® xo=3.9, the fluid-fluid
coexistence lines at small values of polymer-particle size racoexistence is thermodynamically stable) xo=7.0; and(c) ko

tios because the simulation data are not available. With the-9.0, the fluid-fluid phase transitions are metastable. The solid
RG parametersy and L set asyy=7.5 andL/c=1.0, the lines and cycles are fluid-fluid and fluid-solid coexistence curves
calculated fluid-fluid coexistence curve is in excellent agreecalculated from the theory and simulation, respectively. The dashed
ment with simulation results faf= 1. In this case, the agree- lines are fluid-fluid coexistence curves according to the modified
ment between calculated and simulated melting and freezin§ISA theory without RG correction. The diamonds correspond to
lines is also satisfactory. At smaller values&however, the the critical points calculated from Monte Carlo simulati@b].

e/kT
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0.0 3.0
] ¢ Yukawa )L
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o~ ] o a-L] / .
o) . X HS-mix /.
0.5 1 p 2 20 + Colloid Vi
p § 201 g/
b: o & ] /
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o b .
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] -
g 2
1 S 0.5
54 i
Yo N ~
1.5 T———— T T ?
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0 0.2 0.4 0.6 0.8 1

po’
Range of attractions, I"
FIG. 3. Phase diagrams for the Asakura-Oosawa system of dif- & ’

ferent ranges of attractions. The solid lines and symbols are fluid- F|G, 4. The effect of the range of attractions on the reduced
fluid and fluid-solid coexistence curves calculated from the theoryritical temperature of the fluid-fluid equilibrium for various model
and simulation, respectively. Here the simulation data are fromhotentials. The simulation results are from Noro and Frefi®8]
Tavares and SandI¢63]. and from Vliegenthart and Lekkerkerkgt4], the solid and dashed
lines are calculated results using the RG theory for the Yukawa
perturbation theory gives only a fair account of the freezingpotential and for the square-well potential, the dotted line is an
lines. Similar observations have been reported in previougmpirical correlation proposed by Noro and FreniS]. The RG
investigations on the phase behavior of AO flUid6,63. As  results for the square-well potential are from Lue and Prausnitz
for the Yukawa system, the AO potential yields a stable fluid{74].
fluid phase transition when the attraction is long ranged
(large size of polymer chaipsand a metastable fluid-fluid for six model potentials of colloids. Here the RG results for
transition when the attraction is short rangsdall size of the square-well potential are from Lue and Praugiit. As

polymer chaing introduced by Noro and Frenkp43], the range of attraction
for an arbitrary potential is defined as that for an effective
B. The critical point of the fluid-fluid transition square-well potential that yields the same reduced second

\{irial coefficient at the same reduced temperature. For col-

A few year ago Rosenbaum and co-workers reported tha,[@ X ) : .
when the phase diagrams of some aqueous protein solutio ds with short-ranged attraction$’€0.4), the simulation

and colloidal dispersions are plotted in terms of the stickyP0iNts remarkably fall into a straight line as proposed by
parameter(or effectively, the reduced second virial coeffi- Noro and Frenke[43]:
cient and the reduced number density, the fluid and solid * _
lines of different colloids fall remarkably close as in the cor- Te=0.26+2.1 249
responding state theory of simple fluig#2]. More recently,
Vliegenthart and Lekkerkerker showed that although théWVhile for the Yukawa fluids the critical temperatures pre-
critical temperature is sensitive to the range of attractive indicted by the RG theorythe solid ling agree well with that
teractions, the reduced osmotic second virial coefficient refrom Eq.(24), when the range of attraction is larger than 0.4,
mains practically constant at the critical pojdt]. Based on the critical temperatures of the square-well fluids calculated
these and other investigations on the critical behavior of colfrom the RG theory and from the Monte Carlo simulation
loidal dispersions, it has been speculated that the fluid-fluiglearly do not follow the simple linear relation. The deviation
coexistence curves of colloidal dispersions may follow anis most significant at large values of the range of attractions.
extended corresponding thed3]. Semiempirical correla- We found that the invariance of the reduced second virial
tions have also been proposed as a predictor for protein crysoefficients B% = BZ/BQS) at the critical point of fluid-fluid
tallization and for the solubility of proteins in aqueous solu-transition is not supported by the RG calculations at least for
tions [9,45. While these and other semiempirical the Yukawa and the square-well fluids. Indeed, it has been
correlations appear in good agreement with a variety oShown before by Rosenbaum and co-workers that at the criti-
simulation results and experimental data, little theoretical incal point of the metastable fluid-fluid equilibrium, the re-
vestigations have been reported on the critical temperatureticed osmotic second virial coefficients of protein solutions
of colloidal dispersions with variable ranges of attractions. remain sensitive to the solution conditioptl]. Figure 5
Figure 4 shows the effect of the reduced critical temperaplots B5 vs I', using results from RG calculations and from
ture (Tg =kT./e) as a function of the range of attractid) ~ the Monte Carlo simulations. At small valuesIdfvhere the
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FIG. 5. The reduced second virial coefficient at the fluid-fluid  FIG. 6. The reduced densities of vapor, liquid, and solid phases

critical point for the Yukawa potential and for the square-well po- at the triple points of the Yukawa model system at various ranges of
tential. The points are simulation results from Vliegenthart and Le-attractions.

kkerkerker[44], and the solid lines are calculated, using the RG
theory. The RG results for the square-well potential are from Luesities of vapor, liquid, and solid are easily distinguishable.
and Prausnit£74]. The densities of “vapor” and “liquid” phases converges as

the range of attraction decreases and whern>5.3, the
attractive potential is short ranged, the reduced second viridfiple point disappears, signaling a metastable fluid-fluid

coefficient declines ak increases. Interestinglgs exhibits  transition. This value oko corresponds to the range of at-
a minimum at an intermediate range of attractions for theractionI’=0.13 at the critical point, in excellent agreement
square-well potential. There has been speculation that th&ith the simulation result.
low values of the reduced second virial coefficient at the Figure 7 presents the triple points of the AO potential at
critical point of protein solutions are associated with thedifferent values of the polymer-particle size ratios. The
strong anisotropic attractions between protein particlegrossover size ratio predicted by the RG theafy=0.45) is
[8,78]. However, Fig. 5 implies that at certain conditions, anslightly larger than that obtained form direct simulations
isotropic potential may also give a relative small valuebased on the AO potentials&0.4). This discrepancy is
of B} . likely related to the inaccuracy of our theory for predicting
the freezing line of the AO fluid with short-ranged attrac-
_ tions. Based on a model polymer-colloid system consisting
C. Threshold of the range of attraction for a stable

fluid-fluid transition 1.0

It is now well known that the range of attraction between
particles determines whether or not a colloidal system can
exhibit a stable fluid-fluid transition. However, it remains
difficult to quantitatively predict the range of attraction be-
yond which the fluid-fluid transition is thermodynamically 0.8
stable. Recently, Noro and Frenkel observed that for 2
Lennard-Jones potentiak-Lennard-Jones potential, and at-
tractive Yukawa potential, the boundary between stable and
metastable fluid-fluid transition is located within a narrow
range ofl" between 0.13 and 0.133]. 064" I

By using the RG theory and perturbation theories for fluid 1 /
and solids, we calculated the triple points of the Yukawa and s
AO fluids at different ranges of attractions. The triple point 1 . /
disappears when the fluid-fluid transition becomes meta- T —
stable in comparison to the fluid-solid equilibrium. Figure 6
shows_the dependence of the triple _point densities on fthe 0 02 04 06 08 ) 12 14
screening parameters of the attractive Yukawa potential. po
When the attraction is long rangésimall values ofo), the
triple point resembles that for a simple fluid where the den-

2]

T — - ——s o —

FIG. 7. The triple points for the Asakura-Oosawa system.
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0.26 is likely to occur underneath the percolation line. When the
a) ko0=9.0 / attraction is short-ranged, the percolation line crosses both
the freezing line and the metastable fluid-fluid coexistence
curve. Above the percolation line, crystallization and meta-
stable fluid-fluid transition are expected to be observable.
Conversably, below the percolation line, gelation may occur
before crystallization or the metastable fluid-fluid separation.
As the range of attraction increases, the percolation line
shifts to the right-hand side of the phase diagram. As a result,
\ gelation becomes less likely to interfere with the crystalliza-
tion and the fluid-fluid transitions. Because colloidal par-
ticles are often larger than protein molecules and the attrac-
tion between colloidal particles is relatively shorter ranged in
1 comparison to that between proteins, Fig. 8 explains in part
0.06 +—4———"——r——T——T——Tr—r— why metastable fluid-fluid transition is often observed in
0 0.2 0.4 0.6 0.8 aqueous protein solutions, but not in typical colloids. Similar
equilibrium and nonequilibrium phase boundaries have been
reported by Kulkarni and co-workers for square-well systems
0.12 - and for aqueous protein solutiof).
b)ko=1.8 | For systems with long-ranged attractions, the fluid-fluid
| transition becomes thermodynamically stable and the gela-
1 | tion line shifts out of the fluid-fluid coexistence regiffig.
0.1 ] | 8(b)]. As the range of attraction is further increased, we ex-
1
I
!
I

0.22 1

0.18 1

[

0.14 1

0.10 1

pect that the percolation line will move further toward the
right-hand side of the melting line. In that event, both the
fluid-fluid and fluid-solid transitions are free from the inter-
ference of the percolation. As a result, the fluid-fluid transi-
tion and freezing should be readily observable as in a simple
] | fluid where the intermolecular attractions are long ranged.
0.09 - | The interplay between the equilibrium phase behavior and
1 | gelation, as shown in Fig. 8, agrees at least qualitatively with
that reported by Foffi and co-workers based on SCOZA for
/ the fluid phases and MCT for gelati¢a7].
0.08 R Similar phase behavior is observed using the AO potential
0 oL 02 03 04 05 06 07 (Fig. 9). Interestingly, we found that, as shown in Figa
n the percolation line may interfere only with the metastable

fluid-fluid transition, but not with the freezing line for the

FIG. 8. (8 The fluid-fluid coexistencéthin broken ling, the =~ AO system with short-ranged attractions. In comparison to
fluid-solid coexistencesolid line), as well as the percolation line that in the Yukawa system with also short-ranged attractions
(dashed lingfor the Yukawa potential ako=9.0. (b) Same aga) ~ [Fig. 8@)], it appears that crystallization in colloidal systems
but for ko=1.8. Here the fluid-fluid transition is thermodynami- is sensitive to the specific forms of the attractive potential.
cally stable and is labeled as the thin solid line. Figure 94b) shows that in the AO system, the percolation line
may impede the fluid-fluid equilibrium, freezing as well as

of poly(methyl methacrylateparticle and polystyrene poly- melting transitions.
mers, the experimental value for the crossover size ratio is
about 0.24, significantly lower than the prediction of most IV. CONCLUSIONS

current calculations. This disagreement between the theory Over the last decade there h b tensive | i
and experiments warrants further investigations. Because jt Vel € 1ast decade there have been extensive investiga-

is not obvious on how to define the reduced temperature i ons on the relation between the osmotic second virial coef-

terms of the AO potential, we did not compare the onse icient and the phase behavior of colloids, solubility and

range of attraction with the empirical rule proposed b Norocrystallization of proteins in aqueous sqlutions in pa.rticul.ar.
andgFrenke[43] P prop y We have shown that at the critical point of the fluid-fluid

transition, the osmotic second virial coefficient varies with
the range of attractions, in contrast to the common belief that
it remains practically constant. However, given an accurate
Figure 8 presents the phase diagrams of the Yukawa sygair potential of mean force between colloidal particles,
tem at variable ranges of attractions. Also shown in this fig-statistical-mechanical theories in complement with the RG
ure is the percolation line predicted using E20). Gelation  correction may provide reliable equilibrium phase diagrams

e (.10

D. Gelation
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ence curves and the percolation lines in the same phase dia-
gram, we conclude that gelation is most likely to occur for
systems with short-ranged attractions. The interaction be-
tween gelation and the equilibrium phase transitions depend
not only on the range of attractions but also on the details of
the potential profiles. Because percolation is a necessary but
not sufficient condition leading to gelation or glass transi-
tions, further investigations are required to understand the
interplay among equilibrium and nonequilibrium phase tran-
sitions, glass transitions in particular.
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0.4

/ APPENDIX A
() 5=1.0 /

The following definitions are used to calculate the Helm-
holtz energy of Yukawa fluids according to the modified
MSA. The parameterg, and® in Eq. (2) are given by

IS
SN -

e "O(N)+S(\)

] CDOZ?\?’(l——ﬂ)Z’ (A2)
0-0 ] T T Al L T L} v . . . .
0.0 0.2 04 06 038 and the single-variable functida(x) is
n
1 3 1
FIG. 9. Same as Fig. 8 but for the Asakura-Oosawa pote(gial. F(x)=— 1 IN(1-2x)—2In(1—x)— X" 1% +1,

8=0.2 and(b) §=1.0. (A3)

of colloids (with the premise that the potential of mean force
is pairwise additive

For colloids with short-ranged attractions, the critical tem-
perature of the fluid-fluid transition appears well correlated
with the range of attractions, essentially independent of the O\ =129[(1+ p/2)N+1+27], (A4)
details of the potential profiles. Such correlation will be use-
ful for the estimation of the critical temperature of colloidal
dispersions once the potential profile or the osmotic secondg ) )= (1— 7)2\3+67(1— 7)\2+ 1852\ — 127(1+27),
virial coefficient is already known. Since the latter can be (A5)
conveniently measured using conventional light scattering or
chromatography method§9], a correlation on the critical

where\ = ko and

temperature and the range of attraction may find applications 67n(1+Nop) €
in the identification of favorable solutions conditions leading X= 057 kT (A6)
0

toward protein crystallization. As observed by Noro and
Frenkel[43], the range of attraction may also provide a con-

venient parameter to justify whether or not the fluid-fluid 67 &
transition is thermodynamically stable. _ 0P8 (A7)
_ _ te _ Y= 320 kT
By comparing the relative positions of the phase coexist- Dor
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¢ e *O(N)+S(\) ' (A8)
|
APPERDIXE Tp)~To-1(p) +ap?, (85)
The RG calculations in this work follow the recursion
relations reported by Jiang and Praush&@]. The differen- — ) w2
tial Helmholtz energy density is given by fs(p)=fa-1(p)tap*———, (B6)
22n+lL2
n
Knln=p,  0=p<pmal2 1
Sialp)={ " 01 ®1) a=3 [ unlr—r'har, ®7)
0, Pmad2=pP<Pmax:
wherepaxis the maximum possible particle number density L=L/o, (B8)
and
KT 52=LJ r2ua(jr—r’|)dr (B9)
Kn=5an3> (B2) 3las” A '
2°NL
" For the model potentials considered in this work, we find that
Qi”(p):J exd —G"(p,x)/Kyldx, i=s, |, (B3) the parametew?’ is
0
- o - _,  1[B6+6N+3NZ+\°
) fi(p+x)+ P (p—x)—2fM(p) Dyuk=3 NZ(1FN) (B10)
Gi (p,X)= 2 ’ =S, Il
(B4) for Yukawa fluids and
|
_, 1[—1/5+a,/6—a,/8+(1+6)°/5—ay(1+8)%/6+ay(1+5)°/8 B11
@A0T 3| /3t a /A—a,l6+ (1+ 6)33—ay(1+ )4+ a,(1+ 6)5/6) (B1D)
for AO fluids.
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